Blob Blame History Raw
From: Atish Patra <atish.patra@wdc.com>
Date: Wed, 15 Apr 2020 12:54:18 -0700
Subject: efi/libstub: Move arm-stub to a common file
Patch-mainline: v5.8-rc1
Git-commit: 2e0eb483c058dd013be8e3d0ec1767be531485a2
References: jsc#SLE-16407

Most of the arm-stub code is written in an architecture independent manner.
As a result, RISC-V can reuse most of the arm-stub code.

Rename the arm-stub.c to efi-stub.c so that ARM, ARM64 and RISC-V can use it.
This patch doesn't introduce any functional changes.

Signed-off-by: Atish Patra <atish.patra@wdc.com>
Reviewed-by: Palmer Dabbelt <palmerdabbelt@google.com>
Link: https://lore.kernel.org/r/20200415195422.19866-2-atish.patra@wdc.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Lee, Chun-Yi <jlee@suse.com>
---
 arch/arm/Kconfig                                        |  2 +-
 arch/arm64/Kconfig                                      |  2 +-
 drivers/firmware/efi/Kconfig                            |  4 ++--
 drivers/firmware/efi/libstub/Makefile                   | 12 ++++++------
 drivers/firmware/efi/libstub/{arm-stub.c => efi-stub.c} |  0
 arch/arm/Kconfig                        |    2 
 arch/arm64/Kconfig                      |    2 
 drivers/firmware/efi/Kconfig            |    4 
 drivers/firmware/efi/libstub/Makefile   |   12 
 drivers/firmware/efi/libstub/arm-stub.c |  412 --------------------------------
 drivers/firmware/efi/libstub/efi-stub.c |  412 ++++++++++++++++++++++++++++++++
 6 files changed, 422 insertions(+), 422 deletions(-)
 rename drivers/firmware/efi/libstub/{arm-stub.c => efi-stub.c} (100%)

--- a/arch/arm/Kconfig
+++ b/arch/arm/Kconfig
@@ -2051,7 +2051,7 @@ config EFI
 	select UCS2_STRING
 	select EFI_PARAMS_FROM_FDT
 	select EFI_STUB
-	select EFI_ARMSTUB
+	select EFI_GENERIC_STUB
 	select EFI_RUNTIME_WRAPPERS
 	---help---
 	  This option provides support for runtime services provided
--- a/arch/arm64/Kconfig
+++ b/arch/arm64/Kconfig
@@ -1614,7 +1614,7 @@ config EFI
 	select EFI_PARAMS_FROM_FDT
 	select EFI_RUNTIME_WRAPPERS
 	select EFI_STUB
-	select EFI_ARMSTUB
+	select EFI_GENERIC_STUB
 	default y
 	help
 	  This option provides support for runtime services provided
--- a/drivers/firmware/efi/Kconfig
+++ b/drivers/firmware/efi/Kconfig
@@ -106,12 +106,12 @@ config EFI_PARAMS_FROM_FDT
 config EFI_RUNTIME_WRAPPERS
 	bool
 
-config EFI_ARMSTUB
+config EFI_GENERIC_STUB
 	bool
 
 config EFI_ARMSTUB_DTB_LOADER
 	bool "Enable the DTB loader"
-	depends on EFI_ARMSTUB
+	depends on EFI_GENERIC_STUB
 	default y
 	help
 	  Select this config option to add support for the dtb= command
--- a/drivers/firmware/efi/libstub/Makefile
+++ b/drivers/firmware/efi/libstub/Makefile
@@ -23,7 +23,7 @@ cflags-$(CONFIG_ARM)		:= $(subst $(CC_FL
 				   -fno-builtin -fpic \
 				   $(call cc-option,-mno-single-pic-base)
 
-cflags-$(CONFIG_EFI_ARMSTUB)	+= -I$(srctree)/scripts/dtc/libfdt
+cflags-$(CONFIG_EFI_GENERIC_STUB) += -I$(srctree)/scripts/dtc/libfdt
 
 KBUILD_CFLAGS			:= $(cflags-y) -DDISABLE_BRANCH_PROFILING \
 				   -include $(srctree)/drivers/firmware/efi/libstub/hidden.h \
@@ -45,13 +45,13 @@ lib-y				:= efi-stub-helper.o gop.o secu
 				   skip_spaces.o lib-cmdline.o lib-ctype.o
 
 # include the stub's generic dependencies from lib/ when building for ARM/arm64
-arm-deps-y := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c fdt_empty_tree.c fdt_sw.c
+efi-deps-y := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c fdt_empty_tree.c fdt_sw.c
 
 $(obj)/lib-%.o: $(srctree)/lib/%.c FORCE
 	$(call if_changed_rule,cc_o_c)
 
-lib-$(CONFIG_EFI_ARMSTUB)	+= arm-stub.o fdt.o string.o \
-				   $(patsubst %.c,lib-%.o,$(arm-deps-y))
+lib-$(CONFIG_EFI_GENERIC_STUB)	+= efi-stub.o fdt.o string.o \
+				   $(patsubst %.c,lib-%.o,$(efi-deps-y))
 
 lib-$(CONFIG_ARM)		+= arm32-stub.o
 lib-$(CONFIG_ARM64)		+= arm64-stub.o
@@ -73,8 +73,8 @@ CFLAGS_arm64-stub.o		:= -DTEXT_OFFSET=$(
 # a verification pass to see if any absolute relocations exist in any of the
 # object files.
 #
-extra-$(CONFIG_EFI_ARMSTUB)	:= $(lib-y)
-lib-$(CONFIG_EFI_ARMSTUB)	:= $(patsubst %.o,%.stub.o,$(lib-y))
+extra-$(CONFIG_EFI_GENERIC_STUB) := $(lib-y)
+lib-$(CONFIG_EFI_GENERIC_STUB)	:= $(patsubst %.o,%.stub.o,$(lib-y))
 
 STUBCOPY_FLAGS-$(CONFIG_ARM64)	+= --prefix-alloc-sections=.init \
 				   --prefix-symbols=__efistub_
--- a/drivers/firmware/efi/libstub/arm-stub.c
+++ /dev/null
@@ -1,412 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * EFI stub implementation that is shared by arm and arm64 architectures.
- * This should be #included by the EFI stub implementation files.
- *
- * Copyright (C) 2013,2014 Linaro Limited
- *     Roy Franz <roy.franz@linaro.org
- * Copyright (C) 2013 Red Hat, Inc.
- *     Mark Salter <msalter@redhat.com>
- */
-
-#include <linux/efi.h>
-#include <linux/libfdt.h>
-#include <asm/efi.h>
-
-#include "efistub.h"
-
-/*
- * This is the base address at which to start allocating virtual memory ranges
- * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
- * any allocation we choose, and eliminate the risk of a conflict after kexec.
- * The value chosen is the largest non-zero power of 2 suitable for this purpose
- * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
- * be mapped efficiently.
- * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
- * map everything below 1 GB. (512 MB is a reasonable upper bound for the
- * entire footprint of the UEFI runtime services memory regions)
- */
-#define EFI_RT_VIRTUAL_BASE	SZ_512M
-#define EFI_RT_VIRTUAL_SIZE	SZ_512M
-
-#ifdef CONFIG_ARM64
-# define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
-#else
-# define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
-#endif
-
-static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
-static bool __efistub_global flat_va_mapping;
-
-static efi_system_table_t *__efistub_global sys_table;
-
-__pure efi_system_table_t *efi_system_table(void)
-{
-	return sys_table;
-}
-
-static struct screen_info *setup_graphics(void)
-{
-	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
-	efi_status_t status;
-	unsigned long size;
-	void **gop_handle = NULL;
-	struct screen_info *si = NULL;
-
-	size = 0;
-	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
-			     &gop_proto, NULL, &size, gop_handle);
-	if (status == EFI_BUFFER_TOO_SMALL) {
-		si = alloc_screen_info();
-		if (!si)
-			return NULL;
-		status = efi_setup_gop(si, &gop_proto, size);
-		if (status != EFI_SUCCESS) {
-			free_screen_info(si);
-			return NULL;
-		}
-	}
-	return si;
-}
-
-void install_memreserve_table(void)
-{
-	struct linux_efi_memreserve *rsv;
-	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
-	efi_status_t status;
-
-	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
-			     (void **)&rsv);
-	if (status != EFI_SUCCESS) {
-		pr_efi_err("Failed to allocate memreserve entry!\n");
-		return;
-	}
-
-	rsv->next = 0;
-	rsv->size = 0;
-	atomic_set(&rsv->count, 0);
-
-	status = efi_bs_call(install_configuration_table,
-			     &memreserve_table_guid, rsv);
-	if (status != EFI_SUCCESS)
-		pr_efi_err("Failed to install memreserve config table!\n");
-}
-
-static unsigned long get_dram_base(void)
-{
-	efi_status_t status;
-	unsigned long map_size, buff_size;
-	unsigned long membase  = EFI_ERROR;
-	struct efi_memory_map map;
-	efi_memory_desc_t *md;
-	struct efi_boot_memmap boot_map;
-
-	boot_map.map		= (efi_memory_desc_t **)&map.map;
-	boot_map.map_size	= &map_size;
-	boot_map.desc_size	= &map.desc_size;
-	boot_map.desc_ver	= NULL;
-	boot_map.key_ptr	= NULL;
-	boot_map.buff_size	= &buff_size;
-
-	status = efi_get_memory_map(&boot_map);
-	if (status != EFI_SUCCESS)
-		return membase;
-
-	map.map_end = map.map + map_size;
-
-	for_each_efi_memory_desc_in_map(&map, md) {
-		if (md->attribute & EFI_MEMORY_WB) {
-			if (membase > md->phys_addr)
-				membase = md->phys_addr;
-		}
-	}
-
-	efi_bs_call(free_pool, map.map);
-
-	return membase;
-}
-
-/*
- * This function handles the architcture specific differences between arm and
- * arm64 regarding where the kernel image must be loaded and any memory that
- * must be reserved. On failure it is required to free all
- * all allocations it has made.
- */
-efi_status_t handle_kernel_image(unsigned long *image_addr,
-				 unsigned long *image_size,
-				 unsigned long *reserve_addr,
-				 unsigned long *reserve_size,
-				 unsigned long dram_base,
-				 efi_loaded_image_t *image);
-
-asmlinkage void __noreturn efi_enter_kernel(unsigned long entrypoint,
-					    unsigned long fdt_addr,
-					    unsigned long fdt_size);
-
-/*
- * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
- * that is described in the PE/COFF header.  Most of the code is the same
- * for both archictectures, with the arch-specific code provided in the
- * handle_kernel_image() function.
- */
-efi_status_t efi_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg)
-{
-	efi_loaded_image_t *image;
-	efi_status_t status;
-	unsigned long image_addr;
-	unsigned long image_size = 0;
-	unsigned long dram_base;
-	/* addr/point and size pairs for memory management*/
-	unsigned long initrd_addr = 0;
-	unsigned long initrd_size = 0;
-	unsigned long fdt_addr = 0;  /* Original DTB */
-	unsigned long fdt_size = 0;
-	char *cmdline_ptr = NULL;
-	int cmdline_size = 0;
-	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
-	unsigned long reserve_addr = 0;
-	unsigned long reserve_size = 0;
-	enum efi_secureboot_mode secure_boot;
-	struct screen_info *si;
-	efi_properties_table_t *prop_tbl;
-	unsigned long max_addr;
-
-	sys_table = sys_table_arg;
-
-	/* Check if we were booted by the EFI firmware */
-	if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
-		status = EFI_INVALID_PARAMETER;
-		goto fail;
-	}
-
-	status = check_platform_features();
-	if (status != EFI_SUCCESS)
-		goto fail;
-
-	/*
-	 * Get a handle to the loaded image protocol.  This is used to get
-	 * information about the running image, such as size and the command
-	 * line.
-	 */
-	status = sys_table->boottime->handle_protocol(handle,
-					&loaded_image_proto, (void *)&image);
-	if (status != EFI_SUCCESS) {
-		pr_efi_err("Failed to get loaded image protocol\n");
-		goto fail;
-	}
-
-	dram_base = get_dram_base();
-	if (dram_base == EFI_ERROR) {
-		pr_efi_err("Failed to find DRAM base\n");
-		status = EFI_LOAD_ERROR;
-		goto fail;
-	}
-
-	/*
-	 * Get the command line from EFI, using the LOADED_IMAGE
-	 * protocol. We are going to copy the command line into the
-	 * device tree, so this can be allocated anywhere.
-	 */
-	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size, ULONG_MAX);
-	if (!cmdline_ptr) {
-		pr_efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
-		status = EFI_OUT_OF_RESOURCES;
-		goto fail;
-	}
-
-	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
-	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
-	    cmdline_size == 0)
-		efi_parse_options(CONFIG_CMDLINE);
-
-	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
-		efi_parse_options(cmdline_ptr);
-
-	pr_efi("Booting Linux Kernel...\n");
-
-	si = setup_graphics();
-
-	status = handle_kernel_image(&image_addr, &image_size,
-				     &reserve_addr,
-				     &reserve_size,
-				     dram_base, image);
-	if (status != EFI_SUCCESS) {
-		pr_efi_err("Failed to relocate kernel\n");
-		goto fail_free_cmdline;
-	}
-
-	efi_retrieve_tpm2_eventlog();
-
-	/* Ask the firmware to clear memory on unclean shutdown */
-	efi_enable_reset_attack_mitigation();
-
-	secure_boot = efi_get_secureboot();
-
-	/*
-	 * Unauthenticated device tree data is a security hazard, so ignore
-	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
-	 * boot is enabled if we can't determine its state.
-	 */
-	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
-	     secure_boot != efi_secureboot_mode_disabled) {
-		if (strstr(cmdline_ptr, "dtb="))
-			pr_efi("Ignoring DTB from command line.\n");
-	} else {
-		status = efi_load_dtb(image, &fdt_addr, &fdt_size);
-
-		if (status != EFI_SUCCESS) {
-			pr_efi_err("Failed to load device tree!\n");
-			goto fail_free_image;
-		}
-	}
-
-	if (fdt_addr) {
-		pr_efi("Using DTB from command line\n");
-	} else {
-		/* Look for a device tree configuration table entry. */
-		fdt_addr = (uintptr_t)get_fdt(&fdt_size);
-		if (fdt_addr)
-			pr_efi("Using DTB from configuration table\n");
-	}
-
-	if (!fdt_addr)
-		pr_efi("Generating empty DTB\n");
-
-	if (!noinitrd()) {
-		max_addr = efi_get_max_initrd_addr(dram_base, image_addr);
-		status = efi_load_initrd_dev_path(&initrd_addr, &initrd_size,
-						  max_addr);
-		if (status == EFI_SUCCESS) {
-			pr_efi("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n");
-		} else if (status == EFI_NOT_FOUND) {
-			status = efi_load_initrd(image, &initrd_addr, &initrd_size,
-						 ULONG_MAX, max_addr);
-			if (status == EFI_SUCCESS && initrd_size > 0)
-				pr_efi("Loaded initrd from command line option\n");
-		}
-		if (status != EFI_SUCCESS)
-			pr_efi_err("Failed to load initrd!\n");
-	}
-
-	efi_random_get_seed();
-
-	/*
-	 * If the NX PE data feature is enabled in the properties table, we
-	 * should take care not to create a virtual mapping that changes the
-	 * relative placement of runtime services code and data regions, as
-	 * they may belong to the same PE/COFF executable image in memory.
-	 * The easiest way to achieve that is to simply use a 1:1 mapping.
-	 */
-	prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
-	flat_va_mapping = prop_tbl &&
-			  (prop_tbl->memory_protection_attribute &
-			   EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
-
-	/* hibernation expects the runtime regions to stay in the same place */
-	if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr() && !flat_va_mapping) {
-		/*
-		 * Randomize the base of the UEFI runtime services region.
-		 * Preserve the 2 MB alignment of the region by taking a
-		 * shift of 21 bit positions into account when scaling
-		 * the headroom value using a 32-bit random value.
-		 */
-		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
-					    EFI_RT_VIRTUAL_BASE -
-					    EFI_RT_VIRTUAL_SIZE;
-		u32 rnd;
-
-		status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
-		if (status == EFI_SUCCESS) {
-			virtmap_base = EFI_RT_VIRTUAL_BASE +
-				       (((headroom >> 21) * rnd) >> (32 - 21));
-		}
-	}
-
-	install_memreserve_table();
-
-	status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
-						efi_get_max_fdt_addr(dram_base),
-						initrd_addr, initrd_size,
-						cmdline_ptr, fdt_addr, fdt_size);
-	if (status != EFI_SUCCESS)
-		goto fail_free_initrd;
-
-	efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
-	/* not reached */
-
-fail_free_initrd:
-	pr_efi_err("Failed to update FDT and exit boot services\n");
-
-	efi_free(initrd_size, initrd_addr);
-	efi_free(fdt_size, fdt_addr);
-
-fail_free_image:
-	efi_free(image_size, image_addr);
-	efi_free(reserve_size, reserve_addr);
-fail_free_cmdline:
-	free_screen_info(si);
-	efi_free(cmdline_size, (unsigned long)cmdline_ptr);
-fail:
-	return status;
-}
-
-/*
- * efi_get_virtmap() - create a virtual mapping for the EFI memory map
- *
- * This function populates the virt_addr fields of all memory region descriptors
- * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
- * are also copied to @runtime_map, and their total count is returned in @count.
- */
-void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
-		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
-		     int *count)
-{
-	u64 efi_virt_base = virtmap_base;
-	efi_memory_desc_t *in, *out = runtime_map;
-	int l;
-
-	for (l = 0; l < map_size; l += desc_size) {
-		u64 paddr, size;
-
-		in = (void *)memory_map + l;
-		if (!(in->attribute & EFI_MEMORY_RUNTIME))
-			continue;
-
-		paddr = in->phys_addr;
-		size = in->num_pages * EFI_PAGE_SIZE;
-
-		in->virt_addr = in->phys_addr;
-		if (novamap()) {
-			continue;
-		}
-
-		/*
-		 * Make the mapping compatible with 64k pages: this allows
-		 * a 4k page size kernel to kexec a 64k page size kernel and
-		 * vice versa.
-		 */
-		if (!flat_va_mapping) {
-
-			paddr = round_down(in->phys_addr, SZ_64K);
-			size += in->phys_addr - paddr;
-
-			/*
-			 * Avoid wasting memory on PTEs by choosing a virtual
-			 * base that is compatible with section mappings if this
-			 * region has the appropriate size and physical
-			 * alignment. (Sections are 2 MB on 4k granule kernels)
-			 */
-			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
-				efi_virt_base = round_up(efi_virt_base, SZ_2M);
-			else
-				efi_virt_base = round_up(efi_virt_base, SZ_64K);
-
-			in->virt_addr += efi_virt_base - paddr;
-			efi_virt_base += size;
-		}
-
-		memcpy(out, in, desc_size);
-		out = (void *)out + desc_size;
-		++*count;
-	}
-}
--- /dev/null
+++ b/drivers/firmware/efi/libstub/efi-stub.c
@@ -0,0 +1,412 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * EFI stub implementation that is shared by arm and arm64 architectures.
+ * This should be #included by the EFI stub implementation files.
+ *
+ * Copyright (C) 2013,2014 Linaro Limited
+ *     Roy Franz <roy.franz@linaro.org
+ * Copyright (C) 2013 Red Hat, Inc.
+ *     Mark Salter <msalter@redhat.com>
+ */
+
+#include <linux/efi.h>
+#include <linux/libfdt.h>
+#include <asm/efi.h>
+
+#include "efistub.h"
+
+/*
+ * This is the base address at which to start allocating virtual memory ranges
+ * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
+ * any allocation we choose, and eliminate the risk of a conflict after kexec.
+ * The value chosen is the largest non-zero power of 2 suitable for this purpose
+ * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
+ * be mapped efficiently.
+ * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
+ * map everything below 1 GB. (512 MB is a reasonable upper bound for the
+ * entire footprint of the UEFI runtime services memory regions)
+ */
+#define EFI_RT_VIRTUAL_BASE	SZ_512M
+#define EFI_RT_VIRTUAL_SIZE	SZ_512M
+
+#ifdef CONFIG_ARM64
+# define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
+#else
+# define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
+#endif
+
+static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
+static bool __efistub_global flat_va_mapping;
+
+static efi_system_table_t *__efistub_global sys_table;
+
+__pure efi_system_table_t *efi_system_table(void)
+{
+	return sys_table;
+}
+
+static struct screen_info *setup_graphics(void)
+{
+	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
+	efi_status_t status;
+	unsigned long size;
+	void **gop_handle = NULL;
+	struct screen_info *si = NULL;
+
+	size = 0;
+	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
+			     &gop_proto, NULL, &size, gop_handle);
+	if (status == EFI_BUFFER_TOO_SMALL) {
+		si = alloc_screen_info();
+		if (!si)
+			return NULL;
+		status = efi_setup_gop(si, &gop_proto, size);
+		if (status != EFI_SUCCESS) {
+			free_screen_info(si);
+			return NULL;
+		}
+	}
+	return si;
+}
+
+void install_memreserve_table(void)
+{
+	struct linux_efi_memreserve *rsv;
+	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
+	efi_status_t status;
+
+	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
+			     (void **)&rsv);
+	if (status != EFI_SUCCESS) {
+		pr_efi_err("Failed to allocate memreserve entry!\n");
+		return;
+	}
+
+	rsv->next = 0;
+	rsv->size = 0;
+	atomic_set(&rsv->count, 0);
+
+	status = efi_bs_call(install_configuration_table,
+			     &memreserve_table_guid, rsv);
+	if (status != EFI_SUCCESS)
+		pr_efi_err("Failed to install memreserve config table!\n");
+}
+
+static unsigned long get_dram_base(void)
+{
+	efi_status_t status;
+	unsigned long map_size, buff_size;
+	unsigned long membase  = EFI_ERROR;
+	struct efi_memory_map map;
+	efi_memory_desc_t *md;
+	struct efi_boot_memmap boot_map;
+
+	boot_map.map		= (efi_memory_desc_t **)&map.map;
+	boot_map.map_size	= &map_size;
+	boot_map.desc_size	= &map.desc_size;
+	boot_map.desc_ver	= NULL;
+	boot_map.key_ptr	= NULL;
+	boot_map.buff_size	= &buff_size;
+
+	status = efi_get_memory_map(&boot_map);
+	if (status != EFI_SUCCESS)
+		return membase;
+
+	map.map_end = map.map + map_size;
+
+	for_each_efi_memory_desc_in_map(&map, md) {
+		if (md->attribute & EFI_MEMORY_WB) {
+			if (membase > md->phys_addr)
+				membase = md->phys_addr;
+		}
+	}
+
+	efi_bs_call(free_pool, map.map);
+
+	return membase;
+}
+
+/*
+ * This function handles the architcture specific differences between arm and
+ * arm64 regarding where the kernel image must be loaded and any memory that
+ * must be reserved. On failure it is required to free all
+ * all allocations it has made.
+ */
+efi_status_t handle_kernel_image(unsigned long *image_addr,
+				 unsigned long *image_size,
+				 unsigned long *reserve_addr,
+				 unsigned long *reserve_size,
+				 unsigned long dram_base,
+				 efi_loaded_image_t *image);
+
+asmlinkage void __noreturn efi_enter_kernel(unsigned long entrypoint,
+					    unsigned long fdt_addr,
+					    unsigned long fdt_size);
+
+/*
+ * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
+ * that is described in the PE/COFF header.  Most of the code is the same
+ * for both archictectures, with the arch-specific code provided in the
+ * handle_kernel_image() function.
+ */
+efi_status_t efi_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg)
+{
+	efi_loaded_image_t *image;
+	efi_status_t status;
+	unsigned long image_addr;
+	unsigned long image_size = 0;
+	unsigned long dram_base;
+	/* addr/point and size pairs for memory management*/
+	unsigned long initrd_addr = 0;
+	unsigned long initrd_size = 0;
+	unsigned long fdt_addr = 0;  /* Original DTB */
+	unsigned long fdt_size = 0;
+	char *cmdline_ptr = NULL;
+	int cmdline_size = 0;
+	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
+	unsigned long reserve_addr = 0;
+	unsigned long reserve_size = 0;
+	enum efi_secureboot_mode secure_boot;
+	struct screen_info *si;
+	efi_properties_table_t *prop_tbl;
+	unsigned long max_addr;
+
+	sys_table = sys_table_arg;
+
+	/* Check if we were booted by the EFI firmware */
+	if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
+		status = EFI_INVALID_PARAMETER;
+		goto fail;
+	}
+
+	status = check_platform_features();
+	if (status != EFI_SUCCESS)
+		goto fail;
+
+	/*
+	 * Get a handle to the loaded image protocol.  This is used to get
+	 * information about the running image, such as size and the command
+	 * line.
+	 */
+	status = sys_table->boottime->handle_protocol(handle,
+					&loaded_image_proto, (void *)&image);
+	if (status != EFI_SUCCESS) {
+		pr_efi_err("Failed to get loaded image protocol\n");
+		goto fail;
+	}
+
+	dram_base = get_dram_base();
+	if (dram_base == EFI_ERROR) {
+		pr_efi_err("Failed to find DRAM base\n");
+		status = EFI_LOAD_ERROR;
+		goto fail;
+	}
+
+	/*
+	 * Get the command line from EFI, using the LOADED_IMAGE
+	 * protocol. We are going to copy the command line into the
+	 * device tree, so this can be allocated anywhere.
+	 */
+	cmdline_ptr = efi_convert_cmdline(image, &cmdline_size, ULONG_MAX);
+	if (!cmdline_ptr) {
+		pr_efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
+		status = EFI_OUT_OF_RESOURCES;
+		goto fail;
+	}
+
+	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
+	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
+	    cmdline_size == 0)
+		efi_parse_options(CONFIG_CMDLINE);
+
+	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
+		efi_parse_options(cmdline_ptr);
+
+	pr_efi("Booting Linux Kernel...\n");
+
+	si = setup_graphics();
+
+	status = handle_kernel_image(&image_addr, &image_size,
+				     &reserve_addr,
+				     &reserve_size,
+				     dram_base, image);
+	if (status != EFI_SUCCESS) {
+		pr_efi_err("Failed to relocate kernel\n");
+		goto fail_free_cmdline;
+	}
+
+	efi_retrieve_tpm2_eventlog();
+
+	/* Ask the firmware to clear memory on unclean shutdown */
+	efi_enable_reset_attack_mitigation();
+
+	secure_boot = efi_get_secureboot();
+
+	/*
+	 * Unauthenticated device tree data is a security hazard, so ignore
+	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
+	 * boot is enabled if we can't determine its state.
+	 */
+	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
+	     secure_boot != efi_secureboot_mode_disabled) {
+		if (strstr(cmdline_ptr, "dtb="))
+			pr_efi("Ignoring DTB from command line.\n");
+	} else {
+		status = efi_load_dtb(image, &fdt_addr, &fdt_size);
+
+		if (status != EFI_SUCCESS) {
+			pr_efi_err("Failed to load device tree!\n");
+			goto fail_free_image;
+		}
+	}
+
+	if (fdt_addr) {
+		pr_efi("Using DTB from command line\n");
+	} else {
+		/* Look for a device tree configuration table entry. */
+		fdt_addr = (uintptr_t)get_fdt(&fdt_size);
+		if (fdt_addr)
+			pr_efi("Using DTB from configuration table\n");
+	}
+
+	if (!fdt_addr)
+		pr_efi("Generating empty DTB\n");
+
+	if (!noinitrd()) {
+		max_addr = efi_get_max_initrd_addr(dram_base, image_addr);
+		status = efi_load_initrd_dev_path(&initrd_addr, &initrd_size,
+						  max_addr);
+		if (status == EFI_SUCCESS) {
+			pr_efi("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n");
+		} else if (status == EFI_NOT_FOUND) {
+			status = efi_load_initrd(image, &initrd_addr, &initrd_size,
+						 ULONG_MAX, max_addr);
+			if (status == EFI_SUCCESS && initrd_size > 0)
+				pr_efi("Loaded initrd from command line option\n");
+		}
+		if (status != EFI_SUCCESS)
+			pr_efi_err("Failed to load initrd!\n");
+	}
+
+	efi_random_get_seed();
+
+	/*
+	 * If the NX PE data feature is enabled in the properties table, we
+	 * should take care not to create a virtual mapping that changes the
+	 * relative placement of runtime services code and data regions, as
+	 * they may belong to the same PE/COFF executable image in memory.
+	 * The easiest way to achieve that is to simply use a 1:1 mapping.
+	 */
+	prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
+	flat_va_mapping = prop_tbl &&
+			  (prop_tbl->memory_protection_attribute &
+			   EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
+
+	/* hibernation expects the runtime regions to stay in the same place */
+	if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr() && !flat_va_mapping) {
+		/*
+		 * Randomize the base of the UEFI runtime services region.
+		 * Preserve the 2 MB alignment of the region by taking a
+		 * shift of 21 bit positions into account when scaling
+		 * the headroom value using a 32-bit random value.
+		 */
+		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
+					    EFI_RT_VIRTUAL_BASE -
+					    EFI_RT_VIRTUAL_SIZE;
+		u32 rnd;
+
+		status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
+		if (status == EFI_SUCCESS) {
+			virtmap_base = EFI_RT_VIRTUAL_BASE +
+				       (((headroom >> 21) * rnd) >> (32 - 21));
+		}
+	}
+
+	install_memreserve_table();
+
+	status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
+						efi_get_max_fdt_addr(dram_base),
+						initrd_addr, initrd_size,
+						cmdline_ptr, fdt_addr, fdt_size);
+	if (status != EFI_SUCCESS)
+		goto fail_free_initrd;
+
+	efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
+	/* not reached */
+
+fail_free_initrd:
+	pr_efi_err("Failed to update FDT and exit boot services\n");
+
+	efi_free(initrd_size, initrd_addr);
+	efi_free(fdt_size, fdt_addr);
+
+fail_free_image:
+	efi_free(image_size, image_addr);
+	efi_free(reserve_size, reserve_addr);
+fail_free_cmdline:
+	free_screen_info(si);
+	efi_free(cmdline_size, (unsigned long)cmdline_ptr);
+fail:
+	return status;
+}
+
+/*
+ * efi_get_virtmap() - create a virtual mapping for the EFI memory map
+ *
+ * This function populates the virt_addr fields of all memory region descriptors
+ * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
+ * are also copied to @runtime_map, and their total count is returned in @count.
+ */
+void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
+		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
+		     int *count)
+{
+	u64 efi_virt_base = virtmap_base;
+	efi_memory_desc_t *in, *out = runtime_map;
+	int l;
+
+	for (l = 0; l < map_size; l += desc_size) {
+		u64 paddr, size;
+
+		in = (void *)memory_map + l;
+		if (!(in->attribute & EFI_MEMORY_RUNTIME))
+			continue;
+
+		paddr = in->phys_addr;
+		size = in->num_pages * EFI_PAGE_SIZE;
+
+		in->virt_addr = in->phys_addr;
+		if (novamap()) {
+			continue;
+		}
+
+		/*
+		 * Make the mapping compatible with 64k pages: this allows
+		 * a 4k page size kernel to kexec a 64k page size kernel and
+		 * vice versa.
+		 */
+		if (!flat_va_mapping) {
+
+			paddr = round_down(in->phys_addr, SZ_64K);
+			size += in->phys_addr - paddr;
+
+			/*
+			 * Avoid wasting memory on PTEs by choosing a virtual
+			 * base that is compatible with section mappings if this
+			 * region has the appropriate size and physical
+			 * alignment. (Sections are 2 MB on 4k granule kernels)
+			 */
+			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
+				efi_virt_base = round_up(efi_virt_base, SZ_2M);
+			else
+				efi_virt_base = round_up(efi_virt_base, SZ_64K);
+
+			in->virt_addr += efi_virt_base - paddr;
+			efi_virt_base += size;
+		}
+
+		memcpy(out, in, desc_size);
+		out = (void *)out + desc_size;
+		++*count;
+	}
+}