Blob Blame History Raw
From: Christoph Hellwig <hch@lst.de>
Date: Mon, 31 Jan 2022 19:36:36 +0100
Subject: bpf, docs: Better document the legacy packet access instruction
Patch-mainline: v5.18-rc1
Git-commit: 15175336270a76695412aedf68f3eab746d84b4b
References: jsc#PED-1377

Use consistent terminology and structured RST elements to better document
these two oddball instructions.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220131183638.3934982-4-hch@lst.de
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
---
 Documentation/bpf/instruction-set.rst |   56 ++++++++++++++++++++--------------
 1 file changed, 33 insertions(+), 23 deletions(-)

--- a/Documentation/bpf/instruction-set.rst
+++ b/Documentation/bpf/instruction-set.rst
@@ -213,8 +213,8 @@ The mode modifier is one of:
   mode modifier  value  description
   =============  =====  ====================================
   BPF_IMM        0x00   used for 64-bit mov
-  BPF_ABS        0x20   legacy BPF packet access
-  BPF_IND        0x40   legacy BPF packet access
+  BPF_ABS        0x20   legacy BPF packet access (absolute)
+  BPF_IND        0x40   legacy BPF packet access (indirect)
   BPF_MEM        0x60   regular load and store operations
   BPF_ATOMIC     0xc0   atomic operations
   =============  =====  ====================================
@@ -294,29 +294,39 @@ eBPF has one 16-byte instruction: ``BPF_
 of two consecutive ``struct bpf_insn`` 8-byte blocks and interpreted as single
 instruction that loads 64-bit immediate value into a dst_reg.
 
-Packet access instructions
---------------------------
+Legacy BPF Packet access instructions
+-------------------------------------
 
-eBPF has two non-generic instructions: (BPF_ABS | <size> | BPF_LD) and
-(BPF_IND | <size> | BPF_LD) which are used to access packet data.
+eBPF has special instructions for access to packet data that have been
+carried over from classic BPF to retain the performance of legacy socket
+filters running in the eBPF interpreter.
 
-They had to be carried over from classic BPF to have strong performance of
-socket filters running in eBPF interpreter. These instructions can only
-be used when interpreter context is a pointer to ``struct sk_buff`` and
-have seven implicit operands. Register R6 is an implicit input that must
-contain pointer to sk_buff. Register R0 is an implicit output which contains
-the data fetched from the packet. Registers R1-R5 are scratch registers
-and must not be used to store the data across BPF_ABS | BPF_LD or
-BPF_IND | BPF_LD instructions.
-
-These instructions have implicit program exit condition as well. When
-eBPF program is trying to access the data beyond the packet boundary,
-the interpreter will abort the execution of the program. JIT compilers
-therefore must preserve this property. src_reg and imm32 fields are
-explicit inputs to these instructions.
+The instructions come in two forms: ``BPF_ABS | <size> | BPF_LD`` and
+``BPF_IND | <size> | BPF_LD``.
 
-For example, BPF_IND | BPF_W | BPF_LD means::
+These instructions are used to access packet data and can only be used when
+the program context is a pointer to networking packet.  ``BPF_ABS``
+accesses packet data at an absolute offset specified by the immediate data
+and ``BPF_IND`` access packet data at an offset that includes the value of
+a register in addition to the immediate data.
 
-  R0 = ntohl(*(u32 *) (((struct sk_buff *) R6)->data + src_reg + imm32))
+These instructions have seven implicit operands:
+
+ * Register R6 is an implicit input that must contain pointer to a
+   struct sk_buff.
+ * Register R0 is an implicit output which contains the data fetched from
+   the packet.
+ * Registers R1-R5 are scratch registers that are clobbered after a call to
+   ``BPF_ABS | BPF_LD`` or ``BPF_IND`` | BPF_LD instructions.
+
+These instructions have an implicit program exit condition as well. When an
+eBPF program is trying to access the data beyond the packet boundary, the
+program execution will be aborted.
+
+``BPF_ABS | BPF_W | BPF_LD`` means::
 
-and R1 - R5 are clobbered.
+  R0 = ntohl(*(u32 *) (((struct sk_buff *) R6)->data + imm32))
+
+``BPF_IND | BPF_W | BPF_LD`` means::
+
+  R0 = ntohl(*(u32 *) (((struct sk_buff *) R6)->data + src_reg + imm32))